Adaptive Position and Attitude Tracking Controller for Satellite Proximity Operations using Dual Quaternions

نویسندگان

  • Nuno Filipe
  • Panagiotis Tsiotras
چکیده

This paper proposes a nonlinear adaptive position and attitude tracking controller for satellite proximity operations between a target and a chaser satellite. The controller requires no information about the mass and inertia matrix of the chaser satellite, and takes into account the gravitational acceleration, the gravity-gradient torque, the perturbing acceleration due to Earth’s oblateness, and constant – but otherwise unknown – disturbance forces and torques. Sufficient conditions to identify the mass and inertia matrix of the chaser satellite are also given. The controller is shown to ensure almost global asymptotical stability of the translational and rotational position and velocity tracking errors. Unit dual quaternions are used to simultaneously represent the absolute and relative attitude and position of the target and chaser satellites. The analogies between quaternions and dual quaternions are explored in the development of the controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aas 13-858 Adaptive Position and Attitude Tracking Controller for Satellite Proximity Operations Using Dual Quaternions

In this paper, we propose a nonlinear adaptive position and attitude tracking controller for satellite proximity operations. This controller requires no information about the mass and inertia matrix of the satellite, and takes into account the gravitational force, the gravitygradient torque, the perturbing force due to Earth’s oblateness, and other constant – but otherwise unknown – disturbance...

متن کامل

Adaptive Model-Independent Tracking of Rigid Body Position and Attitude Motion with Mass and Inertia Matrix Identification using Dual Quaternions

In this paper, we propose a nonlinear adaptive position and attitude tracking controller for a rigid body that requires no information about the mass and inertia matrix of the body. Moreover, we provide sufficient conditions on the reference trajectory that guarantee mass and inertia matrix identification. The controller is shown to be almost globally asymptotically stable and can handle large ...

متن کامل

Fault tolerant nano-satellite attitude control by adaptive modified nonsingular fast terminal control

In this paper, an adaptive fault tolerant nonlinear control is proposed for attitude tracking problem of satellite with three magnetorquers and one reaction wheel in the presence of inertia uncertainties, external disturbances, and actuator faults. Firstly, sliding surface variable is chosen based on avoiding the singularity of control signal and guaranteeing the convergence of attitude trackin...

متن کامل

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014